University of Central Florida

Department of Electrical Engineering & Computer Science

 COP4020: Programming Languages I
Fall 2012
Programming project #3 (Concurrent sparse matrix vector Product)
Due November 16th, 2012
In this assignment you have to implement the sparse matrix vector product, y = Ax, using the transpose jagged diagonal storage format (TJDS). The program must be implemented in CHAPEL using the producer consumer approach.
Here are the steps to setup their CHAPEL environment.
Step 1: cd /usr/local/chapel

Step 2: source util/setchplenv.bash

Step 3: cd

The last step will take you back to their home directory. (If you heve problem setting up the environment, please contact Bo)
There is a good chapel language tutorial: http://faculty.knox.edu/dbunde/teaching/chapel/
In this URL you will find information on TJDS here:
http://www.cs.ucf.edu/~eurip/publications/lncs.publication.iscis03.pdf
You can get testing matrices from matrix market:

http://math.nist.gov/MatrixMarket/
Note: Use the Matrix Market format

We suggest that you test your program with a small matrix, say IBM32 which you can get from:
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/ibm32.html
Once your program has been tuned up runs it with a large matrix.

You need to compare the times it takes to carry out the computation with the sequential implementation versus the concurrent version (producer consumer approach).

What to do:

1) Write a program to read in the matrix from matrix market and store it in the TJDS format.

2) Run the sequential implementation of the sparse matrix vector product using TJDS.
3) Run the concurrent version of the sparse matrix vector product using TJDS.

4) Compare the execution time of both versions and indicates which one runs faster.

5) Give results for at least ten matrices.

Submit through Webcourse.

What to submit:

1) The code of the two programs

2) A list of the matrices you used in you experiment. Indicating size, number of non zero elements, and type of matrix.

3) A histogram comparing execution times for ten matrices

